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Abstract

We describe Anysphere, a metadata-private communication system deployed
in the real world. Using private information retrieval based on homomorphic
encryption, our system guarantees metadata privacy even if all of our servers are
compromised and any number of the users and network observers are malicious.
In this whitepaper, we precisely define our threat model, and show how we
achieve security against it both in theory and in practice.

1 Introduction

Electronic communication runs the world. Yet, it is not as secure or private as the in-
person communication it replaced. Advances such as end-to-end encryption are great
for protecting what is being said, but information about who is talking to whom, how
often and when — the metadata — is still being leaked at scale. Hackers, social media
companies, and malicious nation states have open access to the metadata, even for
individuals, organizations and governments that use the most secure communication
platforms on the market.

What is needed is a new approach: every part of every conversation must be protected,
including all metadata. The best way to protect something is to not give anyone access
to it in the first place. Therefore, Anysphere operates on the principle of no needless
trust. Even if all of our servers are compromised, everyone’s communication history
and pattern would still be secure.

This whitepaper explains how Anysphere works. Our code is open source and avail-
able at github.com/anysphere/client.

2 Security Context

In the early days of the internet, everything sent over it was public. If A sent a message
to B, anyone on their path through the internet could read it. Email still operates in
this model of no privacy. Today, there exist end-to-end encrypted alternatives, most
notably the messaging app Signal. Unfortunately, if their servers are hacked, one
of their employees bribed, or an ISP or a government targets you, the attacker can
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Figure 1: The view of a powerful adversary. With end-to-end encryption, the adver-
sary can still see the metadata.

learn when, where and with whom you are talking. Anysphere guarantees metadata
privacy, meaning that all information is hidden from everyone — just like an in-person
conversation. Figure 1 illustrates the difference.

This section describes our desired properties and the threat model we want them
to hold in. In short, we guarantee metadata privacy against everyone except the
conversation partners themselves.

2.1 Goals

1. Metadata privacy. An attacker cannot learn anything about what messages
are being sent when, between whom. This implies that the attacker cannot read
messages (because it does not even know that the messages exist). We guarantee
one of the strongest possible versions of metadata privacy; for more details, see Sec-
tion 3.2.

2. Integrity. An attacker cannot forge a message from anyone, or edit any of the
messages being sent.

3. Resistance to client-side denial-of-service attacks. An attacker that merely
controls some number of users cannot block messages from being delivered. We do not
guarantee service against an attacker that controls the server or the network.

4. Reasonable load on the client. Users are able to run a client on any commonly
sold internet device. The client load should be adjustable.

2.2 Threat Model

No needless trust means that our threat model is as extensive as possible.

1. The attacker may compromise all servers. To achieve privacy, we do not
put any trust in the server. Our threat model assumes a global adversary who has
full control over all servers, and can observe and manipulate all network traffic. This
is similar to other anonymous communication schemes based on private information
retrieval (for example [Ahm+21], §2.2), but stronger than most other anonymous
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communication schemes (e.g. Tor [DMS04] and Nym [Pio+17], which require partial
trust in the servers).

2. The attacker may control the entire internet. See above.

3. The attacker may compromise strangers. We assume that the attacker has
control over all clients that are not a contact of a given user, and can send maliciously
crafted messages to and from these clients.

4. The attacker cannot compromise contacts. We assume that a user’s con-
tacts are trusted, and that the attacker does not have access to their computers.
In [ALT18], Angel, Lazar and Tzialla describe an attack on a general metadata-
private communication system, which shows how to leak metadata in the presence of
a compromised contact. The amount of metadata leaked to contacts is small. In our
security definition [LZA], we precisely define the leakage and show how to prevent
it.

5. The attacker cannot access the user’s computer. We assume that a user’s
local computer is trusted and is running a correct implementation of our system. In
Section 5 we explain how we can relax this assumption slightly.

6. The attacker cannot break standard cryptography. Our threat model as-
sumes the security of the standard cryptographic primitives we use. This includes
Libsodium’s AEAD implementation (XSalsa20) [Den13], and Microsoft SEAL’s ho-
momorphic encryption implementation (BFV) [MR22].

2.3 Non-goals

1. Not a cryptocurrency. Anysphere uses advanced cryptography, but not
blockchains or cryptocurrencies.

2. Not a plugin to an existing ecosystem. Anysphere is not compatible with
existing messaging systems like Signal or email. This is intentional: interfacing with
legacy systems would mean accepting their (much lower) standards of security and
privacy.

3. Not steganographic. Anysphere does not make an attempt to hide who is using
our service.

3 Core Protocol

Consider two fictional users, Alice and Bob. Alice and Bob want to message each
other over an untrusted network without leaking any data or metadata to anyone.
They use authenticated end-to-end encryption to hide the message content and ensure
integrity. They employ two key ideas to hide metadata: sending data at a constant
rate and retrieving homomorphically compressed data.

When signing up, each user gets their own outbox on the server, which is a dedicated
storage space for their messages. Once every minute, Alice sends exactly 1 KB of data
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Figure 2: Alice sends the encryption of a message m to her outbox once every minute.
Bob retrieves Alice’s outbox using private information retrieval (PIR), which appears
to everyone else as if he had downloaded any outbox.

to her outbox. If she has a message to send, she sends the padded encryption of that
message. Otherwise, she sends a random sequence of bytes encrypted with a random
key. This simple idea ensures that neither the server nor any network observers know
when Alice sends a real message.

The message needs to be routed to Bob. In a traditional messaging system, Bob would
download data from Alice’s outbox and decrypt it. However, this leaks metadata: the
server learns that Bob reads from Alice’s outbox, linking the two together.

One solution is for Bob to, once every minute, download all outboxes from the server.
He can then check the value of Alice’s outbox locally. This way, it is impossible for
the server to link Alice to Bob. All metadata is protected.

This is almost how Anysphere works. Obviously, Bob cannot download all outboxes
every minute — that would be way too much data! — so instead he uses private
information retrieval, a well-studied cryptographic primitive, as a way of compressing
his download size. Figure 2 illustrates the core protocol. The following subsections
describe the system in more detail. An exact description of the core protocol, together
with rigorous security proofs, can be found in our security definition [LZA].

3.1 Private information retrieval

We view the outboxes as an array, called db. Bob wants to download Alice’s outbox
db[i] without revealing i to anyone. This problem was first introduced as private
information retrieval (PIR) in 1995 [Cho+95], extended in 1997 to our threat model
under the name cPIR [KO97], and has been extensively studied since then [Mel+16;
Ang+18; Ahm+21].

All known cPIR schemes use homomorphic encryption [Gen10]. To compute the
query q, Bob encrypts i with a homomorphic encryption scheme using a secret key s.
That is, q = HEncs(i). The server can then homomorphically evaluate the function
f(i) = db[i], producing the answer a = HEncs(db[i]). Bob can finally decrypt to
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Protocol 1: Anysphere Core Protocol

Registration. Server allocates outbox i to Alice and generates authentication token
tk. Alice receives (i, tk).

Trust establishment. Alice and Bob agree on a shared secret key k, using a
protocol described in Section 4.

Sending. Exactly once every minute:

• If Alice has a queued message m: she sends (i, tk,Enck(m)) to the server, where
k is the key shared with Bob.

• Otherwise: she sends (i, tk,Enckr (r)) to the server, where r is a random
sequence of bytes and kr is a random key.

The server receives (i, tk, c) and stores c in outbox i if tk is correct.

Receiving. Exactly once every minute:

• Bob runs PIR.Query(i) to obtain a query q and a PIR secret sk. Bob sends q to
the server.

• The server responds with a = PIR.Answer(db, q) and Bob decodes it into
c = PIR.Decode(sk, a).

• Bob tries to decrypt Deck(c) using the shared secret key k.

Figure 3: The simplest version of our core protocol.

find db[i]. In practice, f(i) is often defined in terms of a dot product with a unit
vector representing i, because BFV, the homomorphic scheme being used [FV12], is
particularly good at dot products.

Our implementation currently uses FastPIR, one of the fastest cPIR schemes [Ahm+21].
All cPIR schemes have the same security properties, and we are actively researching
faster schemes (see Section 7).

3.2 Security

The simplest version of our core protocol is shown in Figure 3. In this section, we
show that Alice and Bob enjoy metadata privacy without having to trust anyone
else.

We use the indistinguishability-based notion of metadata privacy defined in the ex-
tended version of Pung [AS16]. An adversary cannot distinguish between two different
PIR queries, which means that the retrievals give the adversary no information. The
sends also do not give the adversary any information, because we use a blockcipher
for the symmetric encryption scheme, which is key-private. Hence, the only thing
an adversary may learn is: the times when users are online, and the timestamps
and contents of messages sent directly to compromised users. Given that we assume
that the adversary does not control an honest user’s contacts, the last case does not

5



reveal any information. In conclusion, the adversary learns nothing about the users’
messages.

Going offline. Users will not always be connected to the internet. At night, most
people put their computers to sleep. This means that users will not be sending
and receiving exactly once every minute, which is the reason the adversary learns
when a user is online. For security-critical use cases, we urge users to keep a regular
transmission schedule by putting their computers to sleep at a regular time each
day.

Authentication token. On registration, the server creates a unique authentication
token for the new user. This allows the server to restrict access to that user’s outbox,
preventing denial-of-service attacks from other users. It should still be noted that, in
accordance with our threat model, we do not prevent against denial-of-service attacks
by ISPs or the server itself — fundamentally, a powerful actor can always shut down
your internet access. In Section 7 we discuss plans for distributing the server such
that, say, only 1 out of 3 servers need to be trusted to provide service.

3.3 Multiple contacts

The simple protocol in Figure 3 assumes that Alice has a single contact Bob. When
Alice has multiple contacts, she picks a message from her queue and encrypts it with
the correct key. When Bob has multiple contacts, he randomly picks a contact and
retrieves their outbox that round.

This way of using the same outbox for all contacts may unfortunately leak some
metadata about Alice and Bob’s conversation to Alice’s other contacts, as described
in [ALT18]. Our threat model assumes that Alice trusts her contacts, which means
that this does not compromise security for us. Nevertheless, for users that do not
wish to trust their contacts, we show how to eliminate this leakage in [LZA].

In the future, we are also planning to implement probabilistic batch codes [Ang+18],
which will make it possible for Alice and Bob to send and retrieve many messages at
once.

3.4 Chunks and ACKs

If Alice wants to send a message longer than 1 KB, she splits the message into chunks
and delivers the chunks to Bob in separate PIR transmissions. To ensure successful
delivery, we took inspiration from TCP/IP. Each message from Alice to Bob is labeled
with an integral message identifier m. Each chunk of message m is further labeled
with a sequence number starting from 1. When Bob receives chunk c of message
m, he sends Alice a short acknowledgement message ACK(m, c) over a separate PIR
database. Alice listens to Bob’s ACK message using PIR, and sends chunk c + 1 of
message m only after reading ACK(m, c) from Bob. Figure 4 illustrates this.

Given the limited communication capacity, ACKs turn out to be slightly more subtle
than this. In particular, if one user goes offline, we need to continue sending ACKs to
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Figure 4: All server interactions for a message from Alice to Bob.

them, which could potentially block other ACKs and slow down message transmission.
Because each ACK only needs to encode two integers (m, c), we can encode the ACKs
for 20 contacts in one database row, avoiding this problem.

4 Trust Establishment

Our core protocol requires users to share a secret key. Creating this shared secret is
generally referred to as the problem of trust establishment [Ung+15], and involves
making sure that the person you talk to is who they say they are. We have an addi-
tional requirement that has only recently been explored by the research community
[LT21]: the trust establishment procedure must not leak metadata.

We provide two different methods of trust establishment: one that completes in-
stantly, but requires the two users to meet in person, and one that allows asyn-
chronous invitations, but can take up to 24 hours. In both methods, we assume that
Alice and Bob each have a Curve25519 key exchange key pair kx = (kxP , kxS), and
aim to inform each other of their kxP to derive a shared secret k. Alice and Bob
additionally need to know each other’s outbox indices.

4.1 In-person Trust Establishment

Alice and Bob establish trust in an in-person meeting, and do a simple key exchange
where they each share their key-exchange public key kxP and outbox index i out loud.
Figure 5 explains the protocol in detail.

This trust establishment protocol needs no third party, which means that it completes
instantly, cheaply, and securely. It does, however, require interaction from both
parties at the same time. While it may seem prohibitive to set up a meeting and type
manually, we believe that it is worth it for security-critical use cases.
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Protocol 2: In-Person Trust Establishment

Encode. Alice encodes her key exchange public key kxPA and her allocation index iA
into a human-readable story sA. Bob similarly encodes his story sB .

Share. Alice and Bob meet. They share their stories, and type each other’s story into
their own client.

Establish contact. Alice decodes Bob’s story to obtain kxPB and iB . She computes
the shared secret k = DH(kxPB , kx

S
A), and adds iB to her set of listening indices.

Figure 5: Establishing trust when the participants can talk to each other.

4.2 Asynchronous Invitations

Alice and Bob can also establish trust asynchronously. Here, we assume that Alice
knows Bob’s public identifier, idB . For example, Bob may have posted his public
identifier on a public platform like Twitter or his website. Alice can use this idB to
privately send an invitation, which Bob can later accept or reject.

To send the invitation, Alice encrypts her own idA using Bob’s public key and sends
the result to the server. Bob then downloads the entire database of invitations, and
finds the invitations meant for him by trying to decrypt each one of them. The full
protocol is described in Figure 6.

This method achieves metadata privacy by hiding the timing of the invitation and
the recipient of Alice’s request. The client sends invitations on a fixed schedule, and
for the public-key cryptography we use an ElGamal-based algorithm, which satisfies
key-privacy [Bel+01].

This method offers trust establishment with convenience on par with existing messag-
ing platforms, at the expense of increased bandwidth costs. A dbasync entry requires
≈ 200 B of storage, which for 10 million users is 2 GB for the entire database. An
individual user might wish to download the database only once or twice daily, which
saves bandwidth but delays the detection of invitations. On the other hand, a com-
pany user could afford to download the database every few seconds, to ensure that
incoming asynchronous invitations get detected almost instantly.

With an optimization, we can make detection even more accessible. Instead of down-
loading the whole database, the server streams a log of changes to dbsync to each user.
If each user writes to dbsync every 20 minutes, then every second only 1/1200 of the
10 million users will change their entries, which corresponds to a change log of less
than 2MB. Thus, any user with download bandwidth at least 2MB / s can detect
incoming asynchronous invitations instantly.

The asynchronous method introduces more attack vectors. For example, an attacker
can socially engineer their way to make Alice believe that a fake idB belongs to Bob.
Note that the identifier does not include Bob’s name, which we believe reduces the
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Protocol 3: Asynchronous Trust Establishment

Send invitation. Alice initiates contact with Bob.

1. Visibility. Bob computes a “public id” idB = (kiPB , kx
P
B , iB), where kiPB is the

invitation public key, kxPB is the key exchange public key, and iB is the outbox
index. Bob shares idB publicly.

2. Invitation. Alice drafts a message mAB for Bob and obtains the triple
(kiPB , kx

P
B , iB) from Bob’s profile. She periodically sends the pair

(iA, cAB = EnckxP
B

(idA|mAB)) to the server, which stores it in a

database dbasync. When Alice has no invitations, she sends (iA,EnckxP (idA|m)),
where kxP and m are random.

3. Invitation message. Alice computes a shared secret sk = DH(kxPB , kx
S
A) with

Bob. She then sends a message invAB via our PIR transport layer, inviting Bob
to join a conversation with her. She waits for Bob’s ACK.

Retrieve invitation. Bob receives Alice’s invitation.

1. Database download. Bob periodically downloads the entire dbasync.

2. Find invitations. Bob computes DeckxS
B

(c) over all key-value pairs (i, c) in

dbasync. If the decryption fails, Bob ignores this pair. If the decryption succeeds
for the pair (i, c) = (iA, cAB), Bob decodes i = iA, idA,mAB , and records an
invitation for him.

3. Verify. Bob needs to verify Alice’s identity using idA and mAB , say by checking
Alice’s profile. Bob now chooses to accept or reject the invitation.

Accept invitation. If Bob accepts, he responds to Alice.

1. Decode. Bob decodes idA = (kiPA, kx
P
A, iA). He computes the shared secret

k = DH(kxPB , kx
S
A) with Alice. He adds iA to the list of indices he listens to.

2. ACK. Bob recieves the invitation message from Alice, invAB . Bob ACKs the
message.

3. ACK received. Alice sees the ACK, finalizing the trust establishment.

Reject invitation. If Bob rejects, no further action is needed.

Figure 6: Establishing trust remotely. Contact can be initiated only by a single
participant and requires acknowledgement from both participants.

potential of this attack, because it makes Alice more likely to verify the identifier be-
fore accepting it. An attacker could also monitor Alice’s traffic to wherever Bob posts
his public identifier. In conclusion, we provide the asynchronous method as a conve-
nient choice, but we recommend that security-critical users use in-person invitations
whenever possible. Still, to our knowledge, our asynchronous method is more private
than any other asynchronous trust establishment that exists in practice.
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More trust

DaemonUser Interface Server

Zero trustLess trust

libsodium

Figure 7: System architecture. The UI and the daemon run on your local computer
and require some trust assumptions. The UI is cut off from the internet, and can
only communicate via the daemon, meaning that it needs lower trust assumptions.
The crypto module in the daemon requires the highest level of trust.

5 Practical Security

Our theoretical guarantees assume that the local computer is completely trusted.
Nothing can defend against a preinstalled backdoor, so we can never eliminate client-
side risk, but we can reduce it. This section outlines the mitigations we undertake: re-
ducing the attack surface through modularization and supply chain protection, open-
sourcing our client, securing code distribution and updates, and protecting against
non-privileged local malware.

We emphasize that we can never eliminate client-side risk. PLEASE DO NOT
USE ANYSPHERE FOR SECURITY-CRITICAL USE CASES ON A
COMPUTER YOU DO NOT TRUST. This is especially true while we are in
beta, and may have bugs.

5.1 Reducing the attack surface

As illustrated in Figure 7, our client consists of two parts: a UI frontend and a
daemon backend. We sandbox the UI so that it is not allowed to talk to the internet.
Instead, all communication goes through the daemon, which contains all security-
critical code. Thus, bugs and malicious code on the frontend have a harder time
compromising security.

We also reduce the attack surface of the daemon. In particular, we ensure a small
dependency chain to prevent supply chain attacks. We chose to use C++ for all
essential daemon code, depending only on a few well-known packages with long-term
support and good security practices (Abseil, gRPC, SQLite, Libsodium). We wrote
a Rust API for database interactions, being extremely careful with our dependency
chain.

10



5.2 Open source

All code that is required for security is open source. The repositories
github.com/anysphere/client and github.com/anysphere/asphr contain all code
for our daemon and UI. Our server is not open source, since we guarantee security
no matter what code is run on our server.

5.3 Securing code distribution and updates

Your computer needs to be running an unmodified copy of our code. For this reason,
Anysphere is not a web app: serving code on the web can never be secure, because an
attacker may at any point decide to serve you malicious code. Instead, Anysphere is a
local app. You download it once, and can ensure that the correct code is downloaded
by checking the signature and hash.

Local apps need to be updated. Currently, we use Electron’s auto-updater to per-
form the signature checks for us. We plan to build our own update process, where
signatures from two members of our team need to be present for the local app to
accept the update.

5.4 Protection against non-privileged local malware

If you’ve granted root privileges to a malicious program on your computer, there
is, unfortunately, nothing to be done. We can, nevertheless, reduce the risk of
non-privileged malware. Our beta version does not protect against non-privileged
malware, but in the future, we are planning to encrypt the local database, require
a password to unlock the app, and use OS-level access controls to make sure only
certain processes can access the daemon.

6 Related Research

The research community has studied metadata-private communication for decades.
In 1981, David Chaum introduced mix-nets, which bounce messages between a small
number of servers [Cha81]. Combined with onion encryption, mix-nets make it im-
possible to determine the destination of a given source packet, assuming that at least
one server is honest. Using mix-nets, Tor was created in 2002 and became one of
the most successful privacy-protecting real-world projects [DMS04]. Unfortunately,
in addition to the server trust issue, mix-nets leak timing data, making it easy for
someone with ISP-level network control to observe who is talking to whom. In today’s
world, it is getting easier and easier to amass enough data to perform such correlation
attacks, making mix-net-based approaches unsuitable [Kar+21].

Systems with stronger metadata-privacy guarantees saw a flurry of interest in the last
decade: Dissent and Riposte used so-called DC-nets [CGF10; CGBM15], Vuvuzela,
Atom, Talek and many others introduced mix-nets with stronger security guarantees
[VDH+15; Che+20; Kwo+17], Clarion, mcMix and Blinder introduced multi-party
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computation techniques [Ale+17; EB21; APY20], and NIAR introduced function-
hiding functional encryption [SW21; Bün+21]. All but NIAR’s approach are less
secure than our PIR-based approach, and NIAR is impractical at scale due to com-
putation time. The PIR line of work, started by Angel with Pung [AS16; Ang+18]
and continued by Addra [Ahm+21], promises both perfect security and reasonable
scalability.

A communication system needs more than just message transmission. There has
been much less attention in the literature to other components: establishing trust,
managing many-to-many conversations, and defending against denial of service, to
name a few. For trust establishment, Liu and Tromer recently initiated work on
oblivious message retrieval [LT21], which is unfortunately not scalable enough for us,
but a good start to a field we want to develop further.

7 What’s Next?

Private communication is a hard problem. We are actively doing research to increase
convenience while preserving metadata privacy, and we urge the research community
to join us.

7.1 Implementation milestones

Anysphere is under active development. This is a list of some of the things we are
working on.

Small files and images. We hope to support the transmission of small files and
images through our current protocol.

Deleting messages. We plan to implement support for deleting messages, making
sure that the messages are deleted forever with a ratcheting mechanism that guaran-
tees forward secrecy.

Public-key infrastructure. We hope to set up a PKI to help the trust establish-
ment process. That said, setting up a PKI is a notoriously hard problem requiring
care.

Calls. We would like to facilitate calls using Anysphere without leaking meta-
data. However, calls using our current PIR setup require infeasible sub-second la-
tency.

Hardened daemon against local malware. We aim to reduce the amount of
trust we place in the client (see Section 5), by hardening the daemon.

7.2 Research problems

A lot of the problems we want to solve are both hard and unsolved. We’re actively
conducting research on these problems.

12



Denial-of-service resistance. While we fundamentally cannot prevent an internet
provider from blocking access, we can reduce the trust assumptions when it comes to
denial of service. For example, it would be great if we could distribute the servers,
and provide a guarantee in the form of “the attacker needs to compromise at least k
of n servers.”

One-to-many and many-to-many conversations. We want to allow groups of
people to broadcast messages to each other, without depending on the presence of
any specific user. The question is how to do it scalably, while also embodying no
needless trust.

More efficient trust establishment. We are actively thinking about improving
our current methods of trust establishment to be faster, more reliable and less prone
to social engineering attacks.

The ACK problem. Currently, if Alice wants to send a 2 KB message to Bob, she
needs to wait for Bob to get online and ACK the first chunk before she can send the
second chunk. If Alice’s and Bob’s time zones do not overlap, this can mean that an
n KB message takes n days to get delivered.

The multiple contacts problem. In our current protocol, the transmission time
for a message scales linearly with the number of contacts a user has. We also want
to increase security by handling compromised contacts better.

Large files and images. Transmission of larger files and images is infeasible in our
current framework because the number of chunks needed to deliver them is in the
thousands.
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